ML模型通常使用高质量的大型数据集进行培训。但是,训练数据集通常包含不一致或不完整的数据。为了解决这个问题,一个解决方案是开发可以检查模型的预测是否是可证明的算法的算法。给定生成分类器的学习算法并在测试时间时给出示例,如果通过在不确定(不一致)数据集的所有可能的世界(维修)训练的每个模型中预测,则对分类结果是可证明的稳健。这种坚固性的概念自然地在某些答案的框架下落下。在本文中,我们研究了一个简单但广泛部署的分类算法的认证稳健性的复杂性,$ k $-nearest邻居($ k $ -nn)。当完整性约束是功能依赖性(FDS)时,我们的主要焦点在于不一致的数据集。对于这种环境,我们在认证稳健性W.R.T的复杂性方面建立了二分法。该组FDS:问题要么承认多项式时间算法,或者它是坚固的。此外,我们对问题的计数版本表现出类似的二分法,其中目标是计算预测某个标签的可能世界的数量。作为我们研究的副产品,我们还建立了与寻找可能是独立兴趣的最佳子集修复相关的问题的复杂性。
translated by 谷歌翻译
将机器人放置在受控条件外,需要多功能的运动表示,使机器人能够学习新任务并使其适应环境变化。在工作区中引入障碍或额外机器人的位置,由于故障或运动范围限制导致的关节范围的修改是典型的案例,适应能力在安全地执行机器人任务的关键作用。已经提出了代表适应性运动技能的概率动态(PROMP),其被建模为轨迹的高斯分布。这些都是在分析讲道的,可以从少数演示中学习。然而,原始PROMP制定和随后的方法都仅为特定运动适应问题提供解决方案,例如障碍避免,以及普遍的,统一的适应概率方法缺失。在本文中,我们开发了一种用于调整PROMP的通用概率框架。我们统一以前的适应技术,例如,各种类型的避避,通过一个框架,互相避免,在一个框架中,并将它们结合起来解决复杂的机器人问题。另外,我们推导了新颖的适应技术,例如时间上未结合的通量和互相避免。我们制定适应作为约束优化问题,在那里我们最小化适应的分布与原始原始的分布之间的kullback-leibler发散,而我们限制了与不希望的轨迹相关的概率质量为低电平。我们展示了我们在双机器人手臂设置中的模拟平面机器人武器和7-DOF法兰卡 - Emika机器人的若干适应问题的方法。
translated by 谷歌翻译